Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Vaccines (Basel) ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2306446

ABSTRACT

An intranasal COVID-19 vaccine, DelNS1-based RBD vaccines composed of H1N1 subtype (DelNS1-nCoV-RBD LAIV) was developed to evaluate the safety and immunogenicity in healthy adults. We conducted a phase 1 randomized, double-blinded, placebo-controlled study on healthy participants, age 18-55 and COVID-19 vaccines naïve, between March and September 2021. Participants were enrolled and randomly assigned (2:2:1) into the low and high dose DelNS1-nCoV-RBD LAIV manufactured in chicken embryonated eggs or placebo groups. The low and high-dose vaccine were composed of 1 × 107 EID50/ dose and 1 × 107.7 EID50/ dose in 0.2 mL respectively. The placebo vaccine was composed of inert excipients/dose in 0.2 mL. Recruited participants were administered the vaccine intranasally on day 0 and day 28. The primary end-point was the safety of the vaccine. The secondary endpoints included cellular, humoral, and mucosal immune responses post-vaccination at pre-specified time-points. The cellular response was measured by the T-cell ELISpot assay. The humoral response was measured by the serum anti-RBD IgG and live-virus neutralizing antibody against SARS-CoV-2. The saliva total Ig antibody responses in mucosal secretion against SARS-CoV-2 RBD was also assessed. Twenty-nine healthy Chinese participants were vaccinated (low-dose: 11; high-dose: 12 and placebo: 6). The median age was 26 years. Twenty participants (69%) were male. No participant was discontinued due to an adverse event or COVID-19 infection during the clinical trial. There was no significant difference in the incidence of adverse events (p = 0.620). For the T-cell response elicited after full vaccination, the positive PBMC in the high-dose group increased to 12.5 SFU/106 PMBC (day 42) from 0 (baseline), while it increased to 5 SFU/106 PBMC (day 42) from 2.5 SFU/106 PBMC (baseline) in the placebo group. The high-dose group showed a slightly higher level of mucosal Ig than the control group after receiving two doses of the vaccine (day 31, 0.24 vs. 0.21, p = 0.046; day 56 0.31 vs. 0.15, p = 0.45). There was no difference in the T-cell and saliva Ig response between the low-dose and placebo groups. The serum anti-RBD IgG and live virus neutralizing antibody against SARS-CoV-2 were undetectable in all samples. The high-dose intranasal DelNS1-nCoV-RBD LAIV is safe with moderate mucosal immunogenicity. A phase-2 booster trial with a two-dose regimen of the high-dose intranasal DelNS1-nCoV-RBD LAIV is warranted.

2.
Lancet Reg Health West Pac ; 10: 100130, 2021 May.
Article in English | MEDLINE | ID: covidwho-2254259

ABSTRACT

BACKGROUND: Viral genomic surveillance is vital for understanding the transmission of COVID-19. In Hong Kong, breakthrough outbreaks have occurred in July (third wave) and November (fourth wave) 2020. We used whole viral genome analysis to study the characteristics of these waves. METHODS: We analyzed 509 SARS-CoV-2 genomes collected from Hong Kong patients between 22nd January and 29th November, 2020. Phylogenetic and phylodynamic analyses were performed, and were interpreted with epidemiological information. FINDINGS: During the third and fourth waves, diverse SARS-CoV-2 genomes were identified among imported infections. Conversely, local infections were dominated by a single lineage during each wave, with 96.6% (259/268) in the third wave and 100% (73/73) in the fourth wave belonging to B.1.1.63 and B.1.36.27 lineages, respectively. While B.1.1.63 lineage was imported 2 weeks before the beginning of the third wave, B.1.36.27 lineage has circulated in Hong Kong for 2 months prior to the fourth wave. During the fourth wave, 50.7% (37/73) of local infections in November was identical to the viral genome from an imported case in September. Within B.1.1.63 or B.1.36.27 lineage in our cohort, the most common non-synonymous mutations occurred at the helicase (nsp13) gene. INTERPRETATION: Although stringent measures have prevented most imported cases from spreading in Hong Kong, a single lineage with low-level local transmission in October and early November was responsible for the fourth wave. A superspreading event or lower temperature in November may have facilitated the spread of the B.1.36.27 lineage.

3.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Article in English | MEDLINE | ID: covidwho-2254798

ABSTRACT

BACKGROUND: We aimed to investigate the effect of non-alcoholic fatty liver disease (NAFLD) on BNT162b2 immunogenicity against wild-type SARS-CoV-2 and variants and infection outcome, as data are lacking. METHODS: Recipients of two doses of BNT162b2 were prospectively recruited. Outcomes of interest were seroconversion of neutralizing antibody by live virus microneutralization (vMN) to SARS-CoV-2 strains (wild-type, delta and omicron variants) at day 21, 56 and 180 after first dose. Exposure of interest was moderate-to-severe NAFLD (controlled attenuation parameter ≥ 268 dB/M on transient elastography). We calculated adjusted odds ratio (aOR) of infection with NAFLD by adjusting for age, sex, overweight/obesity, diabetes and antibiotic use. RESULTS: Of 259 BNT162b2 recipients (90 (34.7%) male; median age: 50.8 years (IQR: 43.6-57.8)), 68 (26.3%) had NAFLD. For wild type, there was no difference in seroconversion rate between NAFLD and control groups at day 21 (72.1% vs. 77.0%; p = 0.42), day 56 (100% vs. 100%) and day 180 (100% and 97.2%; p = 0.22), respectively. For the delta variant, there was no difference also at day 21 (25.0% vs. 29.5%; p = 0.70), day 56 (100% vs. 98.4%; p = 0.57) and day 180 (89.5% vs. 93.3%; p = 0.58), respectively. For the omicron variant, none achieved seroconversion at day 21 and 180. At day 56, there was no difference in seroconversion rate (15.0% vs. 18.0%; p = 0.76). NAFLD was not an independent risk factor of infection (aOR: 1.50; 95% CI: 0.68-3.24). CONCLUSIONS: NAFLD patients receiving two doses of BNT162b2 had good immunogenicity to wild-type SARS-CoV-2 and the delta variant but not the omicron variant, and they were not at higher risk of infection compared with controls.

4.
Clin Infect Dis ; 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-2236091

ABSTRACT

BACKGROUND: Early antiviral therapy was effective in the treatment of COVID-19. We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200mg loading on day 1 followed by 100mg daily on day 2 to 5 (combination-group), or to remdesivir only of similar regimen (control-group) (1:1). The primary end-point was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom-onset was 3 days. The median age was 65 years and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary-endpoint, the combination-group was significantly quicker to NEWS2 = 0 (4 versus 6.5 days; hazard-ratio [HR],6.59; 95% confidence-interval [CI],6.1-7.09; p < 0.0001) when compared to the control-group. For the secondary endpoints, the combination-group was quicker to negative NPS VL (6 versus 8 days; HR,8.16; 95% CI,7.79-8.52; p < 0.0001) and develop seropositive IgG (8 versus 10 days; HR,10.78; 95% CI,9.98-11.58; p < 0.0001). All adverse events resolved upon follow-up. Combination group (HR,4.1 95%CI,1.9-8.6, p < 0.0001), was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, shorten viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients.

5.
Pediatr Res ; 2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-2232397

ABSTRACT

BACKGROUND: The P.1 variant is a Variant of Concern announced by the WHO. The present work aimed to characterize the clinical features of pediatric patients with SARS-CoV-2 before and after the emergence of P.1. METHODS: This is a cohort study. Data of symptomatic patients younger than 18 years diagnosed with COVID-19 by PCR tests registered in Painel COVID-19 Amazonas were analyzed. RESULTS: A total of 4080 symptomatic pediatric patients were identified in the database between March 2020 and July 2021, of which 1654 were categorized as pre-P.1 and 978 as P.1-dominant cases, based on the prevalence of P.1 of >90% in the North Region, Brazil. Lower case-fatality rate was observed in non-infants infected during the P.1-dominant period (0.9% vs. 2.2%). In general, patients infected during the P.1-dominant period had less fever (70.8% vs. 74.2%) and less lower respiratory tract symptoms (respiratory distress: 11.8% vs. 18.9%, dyspnea: 27.9% vs. 34.5%) yet higher prevalence of neurological symptoms, headache for example (42.8% vs. 5.9%). CONCLUSIONS: The prevalence of symptoms of COVID-19 can differ across different periods of variant dominance. Lower prevalence of fever during the P.1-dominant period may reduce the effectiveness of symptom-based screening in public premises where laboratory diagnostic tests are not available. IMPACT: The prevalence rate of symptoms of SARS-CoV-2 infection can differ among different variants. The present work documents the difference in the clinical features of SARS-CoV-2 in patients aged below 18 years before and after the emergence of P.1, the first study of its kind. Unlike previous studies that focus solely on hospitalized cases, the present work considers both mild and severe cases. While non-infants had a lower fatality rate, lower prevalence of fever associated with the emergence of P.1 may reduce the effectiveness of symptom-based screening in public premises where laboratory diagnostic tests are not available.

6.
EBioMedicine ; 88: 104446, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2210169

ABSTRACT

BACKGROUND: Vaccination reduces COVID-19-related hospitalization among older adults. However, how SARS-CoV-2 infection and vaccine regimens affect vaccine-elicited immunity remain unclear. METHODS: This is a cross-sectional study recruiting adults aged ≥70 years with comorbidities in Hong Kong. Demographic and clinical information were collected using a questionnaire. Neutralizing antibody (nAb) titers (against ancestral and Omicron strains) and SARS-CoV-2-specific T cell response were analyzed according to infection and vaccination status. Multivariable regression analysis was performed to assess the associations of BNT162b2 and booster doses with higher nAb titers, with adjustment for comorbidities. FINDINGS: In July 2022, 101 patients were recruited, of whom 25 (24%) had previous infection. Overall, the geometric mean titer (GMT) of BA.5 nAb was 2.8-fold lower than that against BA.2 (P < 0.0001). The ancestral strain and BA.2 titers were higher for the 3-4-dose-BNT162 group than the 2-dose-BNT162b2 group. Non-infected individuals in the 3-4-dose-CoronaVac group had a more robust T cell response than the 2-dose-CoronaVac group (P = 0.0181), but there was no significant difference between the 2-dose-BNT162b2 and 3-4-dose-BNT162b groups. Patients who had heterologous CoronaVac-BNT162b2 prime-boost regimen had 3.22-fold higher BA.5 nAb titers than those who were primed/boosted with CoronaVac (P = 0.0207). Patients with hybrid immunity had higher Omicron nAb titers than those with vaccine-only immunity. Multivariable analysis showed that BNT162b2 and booster doses were independently associated with higher ancestral strain nAb titers. INTERPRETATION: Our data support the use of booster doses for older adults with or without prior infection. Non-infected individuals primed with CoronaVac will benefit from heterologous mRNA vaccine booster. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service (See acknowledgements for full list).


Subject(s)
COVID-19 , Vaccines , Humans , Aged , Cross-Sectional Studies , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Immunity, Cellular , Antibodies, Viral , Antibodies, Neutralizing
9.
Infect Control Hosp Epidemiol ; 41(11): 1258-1265, 2020 11.
Article in English | MEDLINE | ID: covidwho-2096345

ABSTRACT

BACKGROUND: The role of severe respiratory coronavirus virus 2 (SARS-CoV-2)-laden aerosols in the transmission of coronavirus disease 2019 (COVID-19) remains uncertain. Discordant findings of SARS-CoV-2 RNA in air samples were noted in early reports. METHODS: Sampling of air close to 6 asymptomatic and symptomatic COVID-19 patients with and without surgical masks was performed with sampling devices using sterile gelatin filters. Frequently touched environmental surfaces near 21 patients were swabbed before daily environmental disinfection. The correlation between the viral loads of patients' clinical samples and environmental samples was analyzed. RESULTS: All air samples were negative for SARS-CoV-2 RNA in the 6 patients singly isolated inside airborne infection isolation rooms (AIIRs) with 12 air changes per hour. Of 377 environmental samples near 21 patients, 19 (5.0%) were positive by reverse-transcription polymerase chain reaction (RT-PCR) assay, with a median viral load of 9.2 × 102 copies/mL (range, 1.1 × 102 to 9.4 × 104 copies/mL). The contamination rate was highest on patients' mobile phones (6 of 77, 7.8%), followed by bed rails (4 of 74, 5.4%) and toilet door handles (4 of 76, 5.3%). We detected a significant correlation between viral load ranges in clinical samples and positivity rate of environmental samples (P < .001). CONCLUSION: SARS-CoV-2 RNA was not detectable by air samplers, which suggests that the airborne route is not the predominant mode of transmission of SARS-CoV-2. Wearing a surgical mask, appropriate hand hygiene, and thorough environmental disinfection are sufficient infection control measures for COVID-19 patients isolated singly in AIIRs. However, this conclusion may not apply during aerosol-generating procedures or in cohort wards with large numbers of COVID-19 patients.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Fomites/virology , Infection Control/methods , Patients' Rooms , Pneumonia, Viral/transmission , Adolescent , Adult , Aerosols , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Load
10.
Front Immunol ; 13: 1018393, 2022.
Article in English | MEDLINE | ID: covidwho-2089845

ABSTRACT

Acquiring protective immunity through vaccination is essential, especially for patients with type 2 diabetes who are vulnerable for adverse clinical outcomes during coronavirus disease 2019 (COVID-19) infection. Type 2 diabetes (T2D) is associated with immune dysfunction. Here, we evaluated the impact of T2D on the immunological responses induced by mRNA (BNT162b2) and inactivated (CoronaVac) vaccines, the two most commonly used COVID-19 vaccines. The study consisted of two parts. In Part 1, the sera titres of IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) alpha receptor binding domain (RBD), their neutralizing capacity, and antigen-specific CD4+T and CD8+T cell responses at 3-6 months after vaccination were compared between BNT162b2 (n=60) and CoronaVac (n=50) vaccinees with or without T2D. Part 2 was a time-course study investigating the initial B and T cell responses induced by BNT162b2 among vaccinees (n=16) with or without T2D. Our data showed that T2D impaired both cellular and humoral immune responses induced by CoronaVac. For BNT162b2, T2D patients displayed a reduction in CD4+T-helper 1 (Th1) differentiation following their first dose. However, this initial defect was rectified by the second dose of BNT162b2, resulting in comparable levels of memory CD4+ and CD8+T cells, anti-RBD IgG, and neutralizing antibodies with healthy individuals at 3-6 months after vaccination. Hence, T2D influences the effectiveness of COVID-19 vaccines depending on their platform. Our findings provide a potential mechanism for the susceptibility of developing adverse outcomes observed in COVID-19 patients with T2D and received either CoronaVac or just one dose of BNT162b2.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Viral Vaccines , Humans , COVID-19 Vaccines , RNA, Messenger , COVID-19/prevention & control , BNT162 Vaccine , RNA, Viral , SARS-CoV-2 , Immunity, Cellular , Immunoglobulin G
11.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2050073

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
12.
Viruses ; 14(8)2022 08 04.
Article in English | MEDLINE | ID: covidwho-1969516

ABSTRACT

Formulating termination of isolation (de-isolation) policies requires up-to-date knowledge about viral shedding dynamics. However, current de-isolation policies are largely based on viral load data obtained before the emergence of Omicron variant. In this retrospective cohort study involving adult patients hospitalised for COVID-19 between January and February 2022, we sought to determine SARS-CoV-2 viral shedding kinetics and to investigate the risk factors associated with slow viral decline during the 2022 Omicron wave. A total of 104 patients were included. The viral load was highest (Ct value was lowest) on days 1 post-symptom-onset (PSO) and gradually declined. Older age, hypertension, hyperlipidaemia and chronic kidney disease were associated with slow viral decline in the univariate analysis on both day 7 and day 10 PSO, while incomplete or no vaccination was associated with slow viral decline on day 7 PSO only. However, older age was the only risk factor that remained statistically significant in the multivariate analysis. In conclusion, older age is an independent risk factor associated with slow viral decline in this study conducted during the Omicron-dominant 2022 COVID-19 wave. Transmission-based precaution guidelines should take age into consideration when determining the timing of de-isolation.


Subject(s)
COVID-19 , Viral Load , Virus Shedding , Adult , Aged , COVID-19/virology , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2
13.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Article in English | MEDLINE | ID: covidwho-1954694

ABSTRACT

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Caco-2 Cells , Ceramides , Ethers , Glycerophospholipids , Humans , Lipid Metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
15.
Vaccines (Basel) ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1928706

ABSTRACT

Background: Gut microbiota can be associated with COVID-19 vaccine immunogenicity. We investigated whether recent antibiotic use influences BNT162b2 vaccine immunogenicity. Methods: BNT162b2 recipients from three centers were prospectively recruited. Outcomes of interest were seroconversion of neutralising antibody (NAb) at day 21, 56 and 180 after first dose. We calculated the adjusted odds ratio (aOR) of seroconversion with antibiotic usage (defined as ever use of any antibiotics within six months before first dose of vaccine) by adjusting for covariates including age, sex, smoking, alcohol, and comorbidities. Results: Of 316 BNT162b2 recipients (100 [31.6%] male; median age: 50.1 [IQR: 40.0-57.0] years) recruited, 29 (9.2%) were antibiotic users. There was a trend of lower seroconversion rates in antibiotic users than non-users at day 21 (82.8% vs. 91.3%; p = 0.14) and day 56 (96.6% vs. 99.3%; p = 0.15), but not at day 180 (93.3% vs. 94.1%). A multivariate analysis showed that recent antibiotic usage was associated with a lower seroconversion rate at day 21 (aOR 0.26;95% CI: 0.08-0.96). Other factors associated with a lower seroconversion rate after first dose of the BNT162b2 vaccine included age ≥ 60 years (aOR: 0.34;95% CI: 0.13-0.95) and male sex (aOR: 0.14, 95% CI: 0.05-0.34). There were no significant factors associated with seroconversion after two doses of BNT16b2, including antibiotic use (aOR: 0.03;95% CI: 0.001-1.15). Conclusions: Recent antibiotic use may be associated with a lower seroconversion rate at day 21 (but not day 56 or 180) among BNT162b2 recipients. Further long-term follow-up data with a larger sample size is needed to reach a definite conclusion on how antibiotics influence immunogenicity and the durability of the vaccine response.

16.
Nat Commun ; 13(1): 3618, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1908176

ABSTRACT

Monitoring population protective immunity against SARS-CoV-2 variants is critical for risk assessment. We hypothesize that Hong Kong's explosive Omicron BA.2 outbreak in early 2022 could be explained by low herd immunity. Our seroprevalence study using sera collected from January to December 2021 shows a very low prevalence of neutralizing antibodies (NAb) against ancestral virus among older adults. The age group-specific prevalence of NAb generally correlates with the vaccination uptake rate, but older adults have a much lower NAb seropositive rate than vaccination uptake rate. For all age groups, the seroprevalence of NAb against Omicron variant is much lower than that against the ancestral virus. Our study suggests that this BA.2 outbreak and the exceptionally high case-fatality rate in the ≥80 year-old age group (9.2%) could be attributed to the lack of protective immunity in the population, especially among the vulnerable older adults, and that ongoing sero-surveillance is essential.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Disease Outbreaks , Hong Kong/epidemiology , Humans , Seroepidemiologic Studies
17.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852993

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Outbreaks , Female , Hong Kong/epidemiology , Humans , Mammals , RNA, Viral/genetics , SARS-CoV-2/genetics
18.
Clin Infect Dis ; 75(1): e822-e826, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1852987

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant, designated as a variant of concern by the World Health Organization, carries numerous spike mutations that are known to evade neutralizing antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines. A deeper understanding of the susceptibility of omicron variant to vaccine-induced neutralizing antibodies is urgently needed for risk assessment. METHODS: Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the omicron, delta and beta variants to sera from 25 BNT162b2 and 25 CoronaVac vaccine recipients was determined using a live virus microneutralization assay. RESULTS: The omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in the GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the omicron variant HKU691 and HKU344-R346K, respectively, whereas none of the CoronaVac recipients had detectable neutralizing antibody titer against either omicron isolate. For BNT162b2 recipients, the geometric mean neutralization antibody titers (GMTs) of the omicron variant isolates (5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus (229.4), and the GMTs of both omicron variant isolates were significantly lower than those of the beta and delta variants. There was no significant difference in the GMTs between HKU691 and HKU344-R346K. CONCLUSIONS: Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or CoronaVac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the omicron variant may be associated with lower COVID-19 vaccine effectiveness.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , SARS-CoV-2/genetics
19.
Clin Mol Hepatol ; 28(3): 553-564, 2022 07.
Article in English | MEDLINE | ID: covidwho-1841298

ABSTRACT

BACKGROUND/AIMS: Studies of hepatic steatosis (HS) effect on COVID-19 vaccine immunogenicity are lacking. We aimed to compare immunogenicity of BNT162b2 and CoronaVac among moderate/severe HS and control subjects. METHODS: Two hundred ninety-five subjects who received BNT162b2 or CoronaVac vaccines from five vaccination centers were categorized into moderate/severe HS (controlled attenuation parameter ≥268 dB/m on transient elastography) (n=74) or control (n=221) groups. Primary outcomes were seroconversion rates of neutralising antibody by live virus Microneutralization (vMN) assay (titer ≥10) at day21 (BNT162b2) or day28 (CoronaVac) and day56 (both). Secondary outcome was highest-tier titer response (top 25% of vMN titer; cutoff: 160 [BNT162b2] and 20 [CoronaVac]) at day 56. RESULTS: For BNT162b2 (n=228, 77.3%), there was no statistical differences in seroconversion rates (day21: 71.7% vs. 76.6%; day56: 100% vs. 100%) or vMN geometric mean titer (GMT) (day21: 13.2 vs. 13.3; day56: 91.9 vs. 101.4) among moderate/severe HS and control groups respectively. However, lower proportion of moderate/severe HS patients had highest-tier response (day56: 5.0% vs. 15.5%; P=0.037). For CoronaVac (n=67, 22.7%), there was no statistical differences in seroconversion rates (day21: 7.1% vs. 15.1%; day56: 64.3% vs. 83.0%) or vMN GMT (5.3 vs. 5.8,) at day28. However, moderate/severe HS patients had lower vMN GMT (9.1 vs. 14.8, P=0.021) at day 56 with lower proportion having highest-tier response (21.4% vs. 52.8%, P=0.036). CONCLUSION: While there was no difference in seroconversion rate between moderate/severe HS and control groups after two doses of vaccine, a lower proportion of moderate/severe HS patients achieved highest-tier response for either BNT162b2 or CoronaVac.


Subject(s)
COVID-19 , Fatty Liver , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans
20.
Chemical science ; 13(11):3216-3226, 2022.
Article in English | EuropePMC | ID: covidwho-1782305

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases. A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.

SELECTION OF CITATIONS
SEARCH DETAIL